Genetic Diversity of phlD from 2,4-Diacetylphloroglucinol-Producing Fluorescent Pseudomonas spp.
نویسندگان
چکیده
ABSTRACT Fluorescent Pseudomonas spp. that produce 2,4-diacetylphloroglucinol (2,4-DAPG) have biocontrol activity against damping-off, root rot, and wilt diseases caused by soilborne fungal pathogens, and play a key role in the natural suppression of Gaeumannomyces graminis var. tritici, known as take-all decline. Diversity within phlD, an essential gene in the biosynthesis of 2,4-DAPG, was studied by restriction fragment length polymorphism (RFLP) analysis of 123 2,4-DAPG-producing isolates from six states in the United States and six other locations worldwide. Clusters defined by RFLP analysis of phlD correlated closely with clusters defined previously by BOX-polymerase chain reaction (PCR) genomic fingerprinting, indicating the usefulness of phlD as a marker of genetic diversity and population structure among 2,4-DAPG producers. Genotypes defined by RFLP analysis of phlD were conserved among isolates from the same site and cropping history. Random amplified polymorphic DNA analyses of genomic DNA revealed a higher degree of polymorphism than RFLP and BOX-PCR analyses. Genotypic diversity in a subset of 30 strains representing all the phlD RFLP groups did not correlate with production in vitro of monoacetylphloroglucinol, 2,4-DAPG, or total phloroglucinol compounds. Twenty-seven of the 30 representative strains lacked pyrrolnitrin and pyoluteorin biosynthetic genes as determined by the use of specific primers and probes.
منابع مشابه
Assessment of genotypic diversity of antibiotic-producing pseudomonas species in the rhizosphere by denaturing gradient gel electrophoresis.
The genotypic diversity of antibiotic-producing Pseudomonas spp. provides an enormous resource for identifying strains that are highly rhizosphere competent and superior for biological control of plant diseases. In this study, a simple and rapid method was developed to determine the presence and genotypic diversity of 2,4-diacetylphloroglucinol (DAPG)-producing Pseudomonas strains in rhizospher...
متن کاملDifferential ability of genotypes of 2,4-diacetylphloroglucinol-producing Pseudomonas fluorescens strains to colonize the roots of pea plants.
Indigenous populations of 2,4-diacetylphloroglucinol (2,4-DAPG)-producing fluorescent Pseudomonas spp. that occur naturally in suppressive soils are an enormous resource for improving biological control of plant diseases. Over 300 isolates of 2,4-DAPG-producing fluorescent Pseudomonas spp. were isolated from the rhizosphere of pea plants grown in soils that had undergone pea or wheat monocultur...
متن کاملGenotypic and phenotypic diversity of phlD-containing Pseudomonas strains isolated from the rhizosphere of wheat.
Production of 2,4-diacetylphloroglucinol (2,4-DAPG) in the rhizosphere by strains of fluorescent Pseudomonas spp. results in the suppression of root diseases caused by certain fungal plant pathogens. In this study, fluorescent Pseudomonas strains containing phlD, which is directly involved in the biosynthesis of 2,4-DAPG, were isolated from the rhizosphere of wheat grown in soils from wheat-gro...
متن کاملTake-all of Wheat and Natural Disease Suppression: A Review
In agro-ecosystems worldwide, some of the most important and devastating diseases are caused by soil-borne necrotrophic fungal pathogens, against which crop plants generally lack genetic resistance. However, plants have evolved approaches to protect themselves against pathogens by stimulating and supporting specific groups of beneficial microorganisms that have the ability to protect either by ...
متن کاملIdentification and characterization of a gene cluster for synthesis of the polyketide antibiotic 2,4-diacetylphloroglucinol from Pseudomonas fluorescens Q2-87.
The polyketide metabolite 2,4-diacetylphloroglucinol (2,4-DAPG) is produced by many strains of fluorescent Pseudomonas spp. with biocontrol activity against soilborne fungal plant pathogens. Genes required for 2,4-DAPG synthesis by P. fluorescens Q2-87 are encoded by a 6.5-kb fragment of genomic DNA that can transfer production of 2,4-DAPG to 2,4-DAPG-nonproducing recipient Pseudomonas strains....
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Phytopathology
دوره 91 1 شماره
صفحات -
تاریخ انتشار 2001